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The evolution of CT imaging in metabolic bone 
disease assessment

Introduction

Osteoporosis is a significant and widespread public health 
issue, costing the Italian national health system more than 10 
billion euros per year according to a 2025 ISS press release 
[1]. It is defined as a systemic skeletal disorder characterized 
by a gradual reduction in bone mass and microarchitectural 
deterioration of bone tissue, resulting in decreased mechani-
cal strength and increased susceptibility to fracture [2]. Oste-
oporosis can be primary (postmenopausal or senile), but also 
secondary, when caused by underlying conditions like diabetes 
mellitus, chronic kidney disease (CKD), thyroid and parathy-
roid disorders, gastrointestinal disorders, malnutrition, or the 
use of drugs that induce bone loss [3,4]. The clinical significance 
of osteoporosis is related to the onset of fractures, which are in 
turn linked to high morbidity and mortality, especially in the 
setting of an aging population [5]. 

As osteoporosis remains silent until a fracture occurs, 
screening and preventive strategies are suboptimal. In this con-
text, imaging can play a significant role in detecting the disease 
before it becomes clinically manifest. It is now evident that the 
concept of bone frailty cannot be fully described based on areal 
bone density measured by DXA alone. Consequently, attention 
has shifted toward advanced imaging techniques capable of 
evaluating bone density in a volumetric yet non-invasive man-
ner, providing insight into bone microarchitecture. These novel 
instruments, now being rapidly disseminated, are discussed in 
this short review.

DXA

DXA is the current reference standard for assessing bone 
mineral density (BMD) in the general population, usually at the 
lumbar spine and femur (Figure 1). However, despite its avail-
ability, precision, and low radiation dose, it may fall short in 
terms of its ability to characterize bone fragility in complex set-
tings or populations. For example, bone quality is recognized 
as a major determinant of fracture risk in osteoporosis—a risk 
that may be underestimated by an assessment based on bone 
densitometry alone [6]. In the general population, a substantial 
number of fragility fractures occur in individuals with normal 
or osteopenic BMD. In a study of 616 postmenopausal wom-
en, only 26.9% of fractures occurred in patients with BMD in 
the osteoporotic range (versus 16.6% in the normal range and 
56.5% in the osteopenic range) [7]. This demonstrates that bone 
fragility depends not only on bone density, but also on struc-
tural and material properties of bone that are not captured by 
a standard DXA scan, including trabecular microarchitecture, 
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elasticity, and collagen matrix composition [8]. However, it is 
important to mention that application of an additional approach, 
known as Trabecular Bone Score (TBS), to DXA images of the 
lumbar spine can provide surrogate information on trabecular 
microstructure based on gray-level texture analysis [9]. TBS val-
ues are independent of BMD and have been shown to predict 
bone fractures independently of Fracture Risk Assessment Tool 
(FRAX) results [10]. As a result of sound evidence on its role in 
osteoporosis, TBS was included in the 2023 update of the Adult 
Official Positions of the International Society of Clinical Den-
sitometry (ISCD) [11]. A further limitation of DXA is related to 
its two-dimensionality, which renders measurement dependent 
on body size and makes it susceptible to inaccuracies in the 
presence of spine osteoarthritis, vertebral fractures, and super-
imposed aortic calcifications [12]. 

QCT and opportunistic screening 

Quantitative Computed Tomography (QCT) is a dedicated 
modality for measuring volumetric BMD (vBMD) at axial sites, 
and it has been undergoing a revival in recent years. A stand-
ard acquisition is performed at the lumbar spine, with either a 
single-slice (L1-L3) or a volumetric (L1-L2) technique, or at 
the hip, with either a volumetric or a projectional technique. 
It may be especially useful in patients with comorbidities or 
anatomical alterations that undermine the accuracy of DXA, 
such as individuals with abnormally small or large body size, 
advanced degenerative spine disease, significant obesity (BMI 
> 35), or undergoing pharmacologic therapies that require more 
sensitive monitoring. QCT makes it possible to evaluate the 
trabecular compartment directly (Figure 2), providing some 

insight into bone microarchitecture [13,14]. Conventional QCT 
requires the presence of a calibration phantom to be scanned 
simultaneously with the patient; phantoms contain materials 
with X-ray attenuation characteristics similar to those of bone 
at a set of known densities, enabling conversion of Hounsfield 
Units (HU) to actual BMD values via regression curves [15]. 
Moreover, CT can readily identify unsuspected compression 
fractures, which establish the diagnosis of osteoporosis even 
when DXA T-scores are normal [16]. 

Aside from standard QCT, scientific interest is now turning 
toward the opportunistic use of CT to identify individuals with 
osteoporosis or at high risk of fracture, as the technique may al-
low screening for bone fragility with no additional time, costs, 
or radiation exposure [16]. Although the QCT standard approach 
is based on synchronous calibration with a phantom, it is not 
suitable for routine clinical scans. 

Therefore, asynchronous and phantomless methods have 
been proposed. The former approach entails periodic scanning 
of the phantom separately from the patient, in order to build 
corresponding calibration curves; a key requisite is stability of 
the scanner [17]. The latter instead exploits known attenuation 
values of specific tissues, referred to as internal calibration ma-
terials, to derive vBMD [18] via a scanner-specific calibration 
curve, which enables conversion of HU to vBMD. Unfortu-
nately, this method is still not sufficiently robust, presenting 
notable limitations related to scanner factors, heterogeneity 
in the composition of reference tissues, and the influence of 
contrast media [19]. A recent scoping review, which identified 
26 relevant published studies, showed that phantomless BMD 
estimation approaches based on CT are a feasible way to detect 
osteoporosis, but that further studies are needed to improve the 
consistency of results [20]. 

CT imaging in metabolic bone disease assessment
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Figure 1 Examples of DXA images at the lumbar spine and left hip, with T-score in the osteoporosis range at the lumbar spine (- 3.0) and the normal 
range at the femoral neck (- 0.7).
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In the setting of opportunistic and phantomless QCT, AI 
may be a game changer, assisting in the analysis of complex 
imaging data and automating tasks such as image segmentation 
and pattern recognition in osteoporosis [21]. Deep learning (DL), 
especially via convolutional neural network (CNN) algorithms, 
could reduce the manual burden for radiologists and improve 
fracture risk prediction [22].

Fang et al. recently investigated a deep CNN model to pre-
dict the BMD of the lumbar vertebrae (L1-L4) from routine 
CT scans, demonstrating high correlation (r > 0.98) with QCT 
taken as reference [23]. Wu et al. instead developed a DL model 
based on low-dose chest CT scans with segmentation of T1-L2 
vertebral bodies, which was tested on three different CT scan-
ners, yielding high sensitivity and specificity for the screening 
of osteopenia and osteoporosis [24]. These findings highlight the 
substantial potential of AI in the field of metabolic bone diseas-
es, which could translate into reduced need for dedicated scans 
and hence decreased healthcare costs and radiation exposure 
for patients. 

HR-pQCT

Originally developed for in vivo assessment of bone mi-
croarchitecture at the distal tibia and distal radius (Figure 3) in 
osteoporosis, HR-pQCT is an innovative X-ray-based three-di-
mensional technique that combines low dose (3–5 μSv of ef-
fective dose per scan) with high resolution (61–82 μm) [25]. It 
provides data on volumetric BMD as well as on bone structure 
and quality, in both the trabecular (e.g., orientation, spacing, 
number and thickness of trabeculae) and the cortical compart-
ments (e.g., thickness and porosity). These features may offer 
insight into the pathophysiological mechanisms underlying 
skeletal fragility and improve fracture risk stratification and 
prediction in primary and secondary osteoporosis; moreover, 

HR-pQCT could have several other potential applications [26]. 
Several studies, both in post-menopausal females and 

in males, have correlated HR-pQCT parameters with frac-
tures. They include the OFELY [27], MrOS [28], CaMos [29], and 
STRAMBO [30] studies. A landmark study carried out by the 
Bone Microarchitecture International Consortium (BoMIC), 
involving a large international cohort of 7254 patients (66% 
women and 34% men), demonstrated that some HR-pQCT pa-
rameters could predict incident fractures independently of fem-
oral neck areal BMD (aBMD) measured by DXA, and also of 
fracture risk estimates obtained using the FRAX algorithm [31]. 
Two recent systematic reviews and meta-analyses confirmed 
the ability of HR-pQCT parameters to predict fractures [32,33]. 
Beyond standard indices, a recent study suggested that HR-
pQCT could further improve our understanding of bone fragil-
ity by evaluating bone phenotypes and heterogeneous microar-
chitectural defects leading to the formation of void spaces [34]. 

HR-pQCT may be particularly suitable for the assessment 
of secondary osteoporosis, linked to CKD for example, where 
bone microstructure may be deteriorated regardless of BMD 
measured by DXA [35]; in this context, the technique could com-
plement bone biopsy in identifying the type of renal osteodys-
trophy [36]. Available evidence also suggests that HR-pQCT is 
feasible in patients with osteogenesis imperfecta and other rare 
skeletal diseases [25,37]. 

Additionally, HR-pQCT appears to be a promising tool 
for refining assessment of responses to anti-osteoporotic drug 
treatments [38], given its unique capacity to simultaneously as-
sess bone microstructure and volumetric density, in both the 
cortical and the trabecular compartments. Of note, the iden-
tification of patients presenting severe microstructural deteri-
oration despite moderately decreased DXA-BMD could have 
important implications for therapeutic decisions [26,39]. 

Despite its valuable potential, there are still some obsta-
cles to more widespread use of HR-pQCT. First, the number 
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Figure 2 Example of axial QCT acquisition at the lumbar spine, where volumetric acquisition is generally performed at L1-L2. In this case, the L2 
vertebral body was selected based on the lateral topograph and the ROI was placed in trabecular bone, avoiding the cortex and the vascular plexus.
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of machines installed worldwide is limited (approximately 100 
as of mid-2022) and they are largely found at research centers 
[25]. Furthermore, these machines are quite expensive and their 
cost-effectiveness is still insufficiently determined. More-
over, there is a need for standardized image acquisition and 
data analysis protocols to facilitate research and the adoption 
of HR-pQCT in clinical practice. Guidelines addressing this 
subject were recently published by a joint working group of 
the International Osteoporosis Foundation, American Society 
of Bone and Mineral Research, and European Calcified Tissue 
Society [40]. Furthermore, there is still a paucity of validated 
normative datasets on HR-pQCT parameters, which would be 
crucial to identify pathological alterations in bone density and 
microarchitecture across different ages and ethnicities, in both 
males and females [25]. 

CBCT

A very similar technology to HR-pQCT is CBCT. Initially 
used for dental imaging, it employs a cone-shaped X-ray beam 
falling on a flat panel detector, rather than a fan-shaped beam 
as in conventional CT. This technique is increasingly being ap-
plied to the musculoskeletal system thanks to its reduced radia-
tion dose and ability to generate images that characterize bone 
microarchitecture with excellent resolution [41]. CBCT systems 
tend to be smaller and less expensive than HR-pQCT ones, 
and offer the additional benefit of shorter acquisition times, 
but they do not usually provide a calibrated BMD output [26], 
although there have been some attempts to quantify trabecular 
bone parameters [42]. 

A recent systematic review of 10 studies assessed the ca-
pacity of CBCT to accurately detect low BMD in post-men-
opausal women, reporting good sensitivity and specificity for 
the diagnosis of osteoporosis [43]. However, further research is 

needed, especially considering some known limitations of the 
system, such as its increased susceptibility to beam-hardening 
artifacts and radiation-scattering effects caused by the conical 
geometry of the beam, as well as the absence of standardized 
calibration phantoms [44]. These factors can cause inconsistency 
in the measurement of HU across different scanners or even 
within the same machine [45]. Nevertheless, recent advances in 
CBCT technology, including improved calibration methods 
and image reconstruction algorithms, are tackling these issues 
with the aim of improving reliability [46].

DECT and PCCT

DECT and PCCT are emerging technologies that offer sub-
stantial advantages for the imaging of metabolic bone diseases. 
DECT employs two photon spectra at different energy levels, 
yielding spectral information based on separate absorption 
measurements and enabling the generation of material decom-
position images [47]. DECT was proposed for the assessment 
of trabecular BMD in vertebrae some decades ago, and phan-
tomless approaches have also been described [48]. DECT is able 
to detect changes in bone marrow composition, to which a 
standard QCT evaluation is insensitive. Interestingly, a phan-
tom study demonstrated that DECT may be more accurate than 
QCT in measuring BMD [49]. Moreover, a recent study evalu-
ated the performance of a phantomless DECT algorithm based 
on material decomposition in determining BMD at the lumbar 
spine. Compared with traditional HU measurements, it showed 
superior diagnostic accuracy for osteoporosis, with DXA used 
as the reference standard [50]. Furthermore, retrospective assess-
ment of BMD with DECT was shown to predict the two-year 
occurrence of fragility fractures in at-risk patients with excel-
lent sensitivity and specificity (approximately 85% and 89%, 
respectively) [51]. 

CT imaging in metabolic bone disease assessment
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Figure 3 HR-pQCT images at the distal radius (a) and distal tibia (b) in an adolescent with osteogenesis imperfecta.
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PCCT has been only very recently introduced into clinical 
practice, and it is likely to have a major impact in the field 
of musculoskeletal radiology due to its ability to quantify and 
discriminate the energy of individual photons interacting with 
detectors; this will mean improved spatial resolution, inherent 
multienergy spectral imaging capabilities, and more efficient 
control of radiation dose [52]. PCCT can provide a detailed eval-
uation of the microstructure of cortical and trabecular bone, 
generating quantitative and qualitative information, with initial 
studies reporting outcomes comparable to those of micro-CT 
[53]. Moreover, from an opportunistic screening perspective, 
BMD determination using PCCT localizer radiographs recon-
structed at different energy thresholds has been investigated, on 
the basis of a principle similar to that of DXA [54]. A very recent 
prospective study in 51 subjects suggested that aBMD values 
and corresponding T-scores derived from PCCT localizer spec-
tral images could serve as an opportunistic tool to screen for os-
teoporosis, as demonstrated by a Lin concordance correlation 
coefficient = 0.90 between T-scores and DXA [55]. 

Although these techniques appear to be very promising, 
further research is needed to define their role in the field of 
osteoporosis, focusing particularly on their validation for di-
agnostic purposes and potential inclusion in clinical practice 
guidelines.

Conclusion

Computed tomography, in the form of both traditional 
and emerging technologies, such as QCT, HR-pQCT, CBCT, 
DECT, and PCCT, has a key role to play in the characteriza-
tion of osteoporosis and bone fragility. Each of these modal-
ities has peculiar features, and could complement a standard 
DXA evaluation. Moreover, CT offers the significant advan-
tage of enabling opportunistic screening for low BMD, which 
could improve patient outcomes through earlier detection of 
osteoporosis and thus prevention of fractures. While challenges 
remain—such as the need for greater standardization of pro-
cedures and harmonization of data, as well as for more solid 
evidence on cost-effectiveness— ongoing research combined 
with technological advances and computational progress will 
undoubtedly lead to improved assessment of bone density and 
quality, even using opportunistic approaches. This will pave 
the way for new diagnostic scenarios in the world of metabolic 
bone diseases.
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